On asymptotic packing of geometric graphs

نویسندگان

چکیده

A set of geometric graphs is geometric-packable if it can be asymptotically packed into every sequence drawings the complete graph Kn. For example, triangles due to existence Steiner Triple Systems. When G 4-cycle (or with a chord), we show that plane geometric-packable. In contrast, analogous statement false when nearly any other planar Hamiltonian (with at most 3 possible exceptions). convex convex-packable graphs. each G, determine whether or not convex-packable. Many our proofs explicitly construct these packings; in cases, packings exhibit symmetry mirrors vertex transitivity

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Open Packing Number of Graphs

In a graph G = (V,E), a subset $S⊂V$ is said to be an open packing set if no two vertices of S have a common neighbour in G. The maximum cardinality of an open packing set is called the open packing number and is denoted by $ρ^{o}$. This paper further studies on this parameter by obtaining some new bounds.

متن کامل

On Second Geometric-Arithmetic Index of Graphs

The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.

متن کامل

On Third Geometric-Arithmetic Index of Graphs

Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric-arithmetic index of graphs, Iran. J. Math Chem., 1(2) (2010) 17-28, in this paper we present lower and upper bounds on the third geometric-arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus-Gaddum-type result for GA3.

متن کامل

on open packing number of graphs

in a graph g = (v,e), a subset s  v is said to be an open packing set if no two vertices of s have a common neighbour in g. the maximum cardinality of an open packing set is called the open packing number and is denoted by rho^o. this paper further studies on this parameter by obtaining some new bounds.

متن کامل

Packing Plane Spanning Trees and Paths in Complete Geometric Graphs

We consider the following question: How many edgedisjoint plane spanning trees are contained in a complete geometric graph GKn on any set S of n points in general position in the plane?

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2022

ISSN: ['1872-6771', '0166-218X']

DOI: https://doi.org/10.1016/j.dam.2022.07.030